Supporting Information

Fragmentation of carbohydrate anomeric alkoxyl radicals: a new synthesis of 1,1-difluoro-1-iodo alditols

Cosme G. Francisco, Concepción C. González, Nieves R. Paz, Ernesto Suárez

Structural data and procedures for the synthesis of compounds: 1-12.

General Methods. Melting points were determined with a hot-stage apparatus. Optical rotations were measured at the sodium line at ambient temperature in CHCl₃ solutions. IR spectra were recorded in CCl₄ solutions. NMR spectra were determined at 400 MHz for ¹H and 100.6 MHz for ¹³C in CDCl₃ unless otherwise stated, in the presence of TMS as internal standard. Mass spectra were determined at 70 eV. Merck silica gel 60 PF (0.063–0.2 mm) was used for column chromatography. Circular layers of 1 mm of Merck silica gel 60 PF₂₅₄ were used on a Chromatotron for centrifugally assisted chromatography. Commercially available reagents and solvents were analytical grade or were purified by standard procedures prior to use. All reactions involving air- or moisture-sensitive materials were carried out under a nitrogen atmosphere. The spray reagents for TLC analysis were conducted with 0.5% vanillin in H₂SO₄–EtOH (4:1) and further heating until development of color.

General procedure for the synthesis of 2-deoxy-2,2-difluoropyranoses. To a solution of the corresponding 2-deoxy-2-fluoro-hex-1-enitol (1 mmol) in THF (10 mL) and H_2O (1 mL), was added F-TEDA-BF₄ (SelectfluorTM) (1.5 mmol). The reaction was stirred at room temperature for 14 h and refluxed for 30 m. Once cooled, the reaction mixture was then poured into water and extracted with ethyl acetate. The organic layer was dried and concentrated in vacuo. Column chromatography of the residue (n-hexane-EtOAc mixtures) afforded the required fluorohydrin compounds.

General procedure for the ARF reaction. A solution of the difluorohydrin (1 mmol) in CH₂Cl₂ (50 mL) containing (diacetoxyiodo)benzene (1.5 mmol) and iodine (1 mmol) was irradiated with two 80 W tungsten-filament lamps at room temperature. The reaction mixture was then poured into water and extracted with CH₂Cl₂. The organic layer was washed with 10% aqueous sodium thiosulfate, dried and concentrated in vacuo. Chromatotron chromatography of the residue (hexanes–EtOAc mixtures)

afforded the required 1,1-difluoro-1-iodo compounds. No special precautions need to be taken to exclude light during chromatography and workup, and these compounds can be stored indefinitely under nitrogen at -20 °C in the dark.

3,4,6-Tri-*O*-acetyl-2-deoxy-2,2-difluoro-D-lyxo-hexopyranose (1). Syrup (39 %). IR 3611, 1758, 1371, 1235, 1124 cm⁻¹; ¹H NMR (500 MHz) 2.06 (3H, s), 2.10 (3H, s), 2.15 (3H, s), 4.15 (1H, dd, J = 6.6, 11.4 Hz), 4.18 (1H, dd, J = 6.6, 11.4 Hz), 4.56 (1H, ddd, J = 1.2, 6.6, 6.6 Hz), 5.29 (1H, dd, J = 5.7 Hz, ³ $J_{\text{FH}} = 3.4$ Hz), 5.40–5.50 (2H, m); ¹³C NMR 20.4 (CH₃), 20.7 (2 × CH₃), 61.5 (CH₂), 65.7 (CH, dd, ² $J_{\text{CF}} = 18.4$, 19.1 Hz), 66.4 (CH), 67.4 (CH), 91.9 (CH, dd, ² $J_{\text{CF}} = 29.2$, 32.5 Hz), 114.2 (C, dd, ¹ $J_{\text{CF}} = 251.5$, 252.7 Hz), 169.7 (C), 170.5 (C), 170.7 (C); MS (EI) m/z (rel intensity) 309 (M⁺ – OH, 4), 279 (5), 103 (100). HRMS Calcd for C₁₂H₁₅F₂O₇ 309.078585, found 309.077065. Anal. Calcd for C₁₂H₁₆F₂O₈: C, 44.18; H, 4.94. Found: C, 43.91; H, 5.09.

2-Deoxy-2,2-difluoro-3,4,6-tri-*O*-methyl-D-*lyxo*-hexopyranose (2). Syrup. ¹H NMR (500 MHz) 3.40 (3H, s), 3.56 (3H, s), 3.62 (3H, s), 3.57–3.72 (5H, m), 4.28 (1H, dd, J = 7.5 Hz, $^3J_{\text{FH}} = 4.6 \text{ Hz}$), 5.21 (1H, dd, J = 7.5 Hz); ^{13}C NMR 59.1 (CH₃), 60.0 (CH₃), 61.6 (CH₃), 69.3 (2 × CH), 71.5 (CH₂), 76.9 (CH, dd, $^2J_{\text{CF}} = 17.2$, 26.9 Hz), 91.9 (CH, dd, $^2J_{\text{CF}} = 27.6$, 27.8 Hz), 117.0 (C, t, $^1J_{\text{CF}} = 250.0 \text{ Hz}$); MS (EI) m/z (rel intensity) 242 (M⁺, <1), 167 (7), 138 (8), 119 (19), 107 (88), 101 (100); HRMS Calcd for C₉H₁₆F₂O₅ 242.096588, found 242.094666. Anal. Calcd for C₉H₁₆F₂O₅: C, 44.63; H, 6.66. Found: C, 44.57; H, 6.70.

3,4-Di-*O*-acetyl-**2,6-dideoxy-2,2-difluoro-**L-*arabino*-hexopyranose (3). Crystalline solid (65 %). IR 3615, 3472, 2964, 1764, 1376, 1233, 1078 cm⁻¹; ¹H NMR (500 MHz) 1.21 (3H, d, J = 6.3 Hz), 2.04 (3H, s), 2.12 (3H, s), 3.92 (1H, br s), 4.20 (1H, ddd, J = 6.3, 6.3, 9.9 Hz), 4.94 (1H, t, J = 9.9 Hz), 5.16 (1H, d, ${}^3J_{\text{FH}} = 5.7$ Hz), 5.55 (1H, ddd, J = 9.9 Hz, ${}^3J_{\text{FH}} = 4.6$, 20.8 Hz); ¹³C NMR (125.7 MHz) 17.1 (CH₃), 20.5 (CH₃), 20.6 (CH₃), 65.9 (CH), 68.7 (CH, dd, ${}^2J_{\text{CF}} = 19.0$, 19.4 Hz), 72.6 (CH, dd, ${}^3J_{\text{CF}} = 5.8$, 8.5 Hz), 91.2 (CH, dd, ${}^2J_{\text{CF}} = 31.0$, 32.7 Hz), 115.8 (C, dd, ${}^1J_{\text{CF}} = 244.5$, 245.1 Hz), 168.8 (C), 170.1 (C); MS (EI) m/z (rel intensity) 251 (M⁺ – OH, 8), 181 (11), 164 (11), 148 (44), 103 (100). HRMS Calcd for C₁₀H₁₃F₂O₅ 251.073105, found 251.071659. Anal. Calcd for C₁₀H₁₄F₂O₆: C, 44.78; H, 5.26. Found: C: 44.80; H, 5.17.

3,4-Di-*O***-acetyl-2,6-dideoxy-2,2-difluoro-**L*-lyxo***-hexopyranose (4).** Syrup (75 %) anomeric mixture (3:1). Major isomer: IR 3610, 2940, 1753, 1368, 1237, 1117, 1090 cm⁻¹; 1 H NMR (500 MHz) 1.18 (3H, d, J = 6.6 Hz), 2.08 (3H, s), 2.16 (3H, s), 4.26 (1H,

d, J = 3.9 Hz), 4.50 (1H, dddd, J = 1.6, 6.6, 6.6, 6.6 Hz), 5.21 (1H, dd, J = 3.9 Hz, ${}^{3}J_{\text{FH}} =$ 6.2 Hz), 5.27 (1H, dd, J = 1.6, 3.9 Hz), 5.44 (1H, ddd, J = 3.9 Hz, ${}^{3}J_{\text{FH}} = 6.0$, 22.3 Hz); 13 C NMR (125.7 MHz) 15.8 (CH₃), 20.4 (CH₃), 20.5 (CH₃), 64.6 (CH), 66.1 (CH, t, ${}^{2}J_{\text{CF}} =$ 19.0 Hz), 69.7 (CH), 91.8 (CH, dd, ${}^{2}J_{\text{CF}} =$ 28.6, 35.3 Hz), 114.3 (C, t, ${}^{1}J_{\text{CF}} =$ 252.2 Hz), 169.9 (C), 171.1 (C); MS (EI) m/z (rel intensity) 251 (M⁺ – OH, 5), 233 (5), 209 (4), 163 (24), 148 (95), 135 (81), 130 (60), 120 (91), 103 (100); HRMS Calcd for $C_{10}H_{13}F_{2}O_{5}$ 251.073105, found: 251.072880. Anal. Calcd for $C_{10}H_{14}F_{2}O_{6}$: C, 44.78; H, 5.26. Found: C: 44.51; H, 5.46.

3,4-Di-*O*-acetyl-2-deoxy-2,2-difluoro-L-*erythro*-pentopyranose (**5**). Crystalline solid (38 %) anomeric mixture (4:1). Major isomer: IR 3618, 1762, 1549, 1239, 1216, 1005 cm⁻¹; 1 H NMR (500 MHz) 2.13 (3H, s), 2.14 (3H, s), 3.14 (1H, d, J = 4.4 Hz), 3.80 (1H, dd, J = 3.7, 12.9 Hz), 4.23 (1H, dd, J = 2.5, 12.9 Hz), 5.22 (1H, ddd, J = 4.4 Hz, 3 $J_{\text{FH}} = 4.4$, 9.1 Hz), 5.32 (1H, m), 5.53 (1H, m); 13 C NMR (125.7 MHz) 20.4 (CH₃), 20.7 (CH₃), 60.7 (CH₂), 65.8 (CH, dd, 2 $J_{\text{CF}} = 20.1$, 20.5 Hz), 67.8 (CH), 91.8 (CH, dd, 2 $J_{\text{CF}} = 30.2$, 31.9 Hz), 114.1 (C, t, 1 $J_{\text{CF}} = 252.6$ Hz), 169.7 (C), 170.0 (C); MS (EI) m/z (rel intensity) 237 (M⁺ – OH, 6), 149 (51), 135 (46), 106 (100); HRMS Calcd for C₉H₁₁F₂O₅ 237.057455, found: 237.055420. Anal. Calcd for C₉H₁₁F₂O₆: C, 42.53; H, 4.76. Found: C, 42.38; H, 4.98.

1,3,4-Tri-*O*-acetyl-5-deoxy-5,5-difluoro-2-*O*-formyl-5-iodo-D-arabinitol (6). Syrup (75%). [α]_D +23 (c = 0.73); IR 1762, 1736, 1370, 1230, 1198, 1056 cm⁻¹; ¹H NMR (500 MHz) 2.03 (3H, s), 2.13 (3H, s), 2.18 (3H, s), 3.91 (1H, dd, J = 7.4, 11.7 Hz), 4.31 (1H, dd, J = 5.0, 11.7 Hz), 5.19 (1H, ddd, J = 8.6 Hz, ³J_{FH} = 5.9, 11.0 Hz), 5.52 (1H, dddd, J = 1.0, 1.7, 5.0, 7.4 Hz), 5.61 (1H, dd, J = 1.7, 8.6 Hz), 8.00 (1H, s); ¹³C NMR 20.5 (CH₃), 20.6 (CH₃), 20.8 (CH₃), 61.6 (CH₂), 67.4 (CH), 68.3 (CH), 72.5 (CH, dd, ²J_{CF} = 23.0, 24.0 Hz), 100.4 (C, t, ¹J_{CF} = 314.3 Hz), 159.7 (CH), 168.3 (C), 169.1 (C), 170.3 (C); MS (rel intensity) m/z 407 (M⁺ – OCOH, 1), 393 (4), 283 (100); HRMS calcd for C₁₁H₁₄F₂IO₆ 406.9803, found 406.9847. Anal. Calcd. for C₁₂H₁₅F₂IO₈: C, 31.86; H, 3.34. Found: C, 31.95; H, 3.31.

5-Deoxy-5,5-difluoro-2-*O***-formyl-5-iodo-1,3,4-tri-***O***-methyl-D-arabinitol** (7). Syrup (57%). [α]_D +9 (c = 0.29); IR (CHCl₃) 2937, 1728, 1460, 1324, 1175, 1124 cm⁻¹; ¹H NMR 2.98 (1H, ddd, J = 7.9 Hz, ³J_{HF} = 5.0, 8.7 Hz), 3.41 (3H, s), 3.42 (3H, s), 3.53 (3H, dd, ⁵J_{HF} = 0.8, 1.3 Hz), 3.58 (2H, d, J = 6.7 Hz), 3.63 (1H, dd, J = 2.3, 7.9 Hz), 5.42 (1H, dddd, J = 1.0, 2.3, 6.7, 6.7 Hz), 8.14 (1H, s). ¹³C NMR 59.0 (CH₃), 60.8

(CH₃), 61.2 (CH₃), 69.6 (CH₂), 70.6 (CH), 79.4 (CH, d, ${}^{3}J_{CF} = 4.3$ Hz), 84.8 (CH, dd, ${}^{2}J_{CF} = 19.4$, 20 Hz), 107.9 (C, dd, ${}^{1}J_{CF} = 316.6$, 322.4 Hz), 160.1 (CH). MS (rel intensity) 353 (M⁺ – Me, 1), 337 (4), 291 (6), 265 (2), 147 (100), 115 (79); HRMS calcd. for C₈H₁₂F₂IO₅ 352.9698, found 352.9699. Anal. Calcd for C₉H₁₅F₂IO₅: C, 29.36; H, 4.11. Found: C, 29.47; H, 4.09.

2,3-Di-*O*-acetyl-1,5-dideoxy-1,1-difluoro-4-*O*-formyl-1-iodo-L-arabinitol (8). Syrup (76%). [α]_D –51 (c = 0.62); IR 2940, 1767, 1736, 1372, 1203, 1161 cm⁻¹; ¹H NMR 1.28 (3H, d, J = 6.4 Hz), 2.13 (3H, s), 2.23 (3H, s), 5.05 (1H, q, J = 6.4 Hz), 5.56 (1H, ddd, J = 2.0 Hz, ³J_{FH} = 10.0, 12.0 Hz), 5.64 (1H, dd, J = 2.0, 6.4 Hz), 8.00 (1H, s); ¹³C NMR 15.9 (CH₃), 20.5 (CH₃), 20.6 (CH₃), 67.2 (CH), 69.3 (CH), 73.5 (CH, dd, ²J_{CF} = 21.8, 24.5 Hz), 98.2 (C, dd, ¹J_{CF} = 314.6, 315.1 Hz), 159.6 (CH), 168.8 (C), 169.3 (C); MS (rel intensity) 349 (M⁺ – OCOH, 36), 267 (9), 225 (97), 205 (100); HRMS calcd for C₉H₁₂F₂IO₄ 348.9748, found 348.9737. Anal. Calcd for C₁₀H₁₃F₂IO₆: C, 30.48; H, 3.32. Found: C: 30.53; H, 3.30.

3,4-Di-O-acetyl-1,5-dideoxy-5,5-difluoro-2-O-formyl-5-iodo-L-arabinitol (9).

Crystalline solid (82%). mp 76.5–78 °C (from *n*-hexane–EtOAc); $[\alpha]_D$ –15 (c = 0.22); IR 2940, 1760, 1731, 1371, 1201, 1170, 1113, 1069 cm⁻¹; ¹H NMR 1.23 (3H, d, J = 6.2 Hz), 2.16 (3H, s), 2.17 (3H, s), 5.18 (1H, dddd, J = 6.2, 6.2, 6.2, 8.8 Hz), 5.32 (1H, dddd, J = 1.1, 2.1 Hz, ³ J_{FH} = 6.6, 13.0 Hz), 5.42 (1H, dd, J = 2.1, 8.8 Hz), 7.96 (1H, s); ¹³C NMR 16.1 (CH₃), 20.5 (CH₃), 20.7 (CH₃), 66.9 (CH), 71.1 (CH), 72.8 (CH, dd, ² J_{CF} = 23.0, 24.0 Hz), 100.8 (C, dd, ¹ J_{CF} = 314.0, 318.0 Hz), 159.9 (CH), 168.2 (C), 169.4 (C); MS (rel intensity) m/z 267 (M⁺ – I, 14), 249 (16), 225 (100), 205 (91); HRMS calcd for C₁₀H₁₃F₂O₆ 267.0680, found 267.0692. Anal. Calcd for C₁₀H₁₃F₂IO₆: C, 30.48; H, 3.32. Found: C: 30.68; H, 3.14.

2,3-Di-*O*-acetyl-1-deoxy-1,1-difluoro-4-*O*-formyl-1-iodo-L-erythritol (10). Syrup. $[\alpha]_D$ –18 (c = 0.27); IR 2940, 1762, 1737, 1371, 1228, 1201 cm⁻¹. ¹H NMR (500 MHz) 2.09 (3H, s), 2.20 (3H, s), 4.29 (1H, dd, J = 6.0, 12.4 Hz), 4.47 (1H, dd, J = 2.5, 12.4 Hz), 5.42 (1H, ddd, J = 6.0 Hz, $^3J_{\text{FH}} = 7.5$, 13.2 Hz), 5.50 (1H, ddd, J = 2.5, 6.0, 6.0 Hz), 8.03 (1H, s); 13 C NMR (125.7 MHz) 20.6 (2 × CH₃), 60.7 (CH₂), 68.4 (CH), 74.4 (CH, dd, $^2J_{\text{CF}} = 23.0$, 24.5 Hz), 98.6 (C, dd, $^1J_{\text{CF}} = 315.8$, 318.8 Hz), 160.1 (CH), 168.2 (C), 169.4 (C); MS (rel intensity) m/z 335 (M⁺ – OCOH, 1), 253 (9), 211 (97), 191 (100); HRMS calcd for $C_8H_{10}F_2IO_4$ 334.9592, found 334.9600. Anal. Calcd for $C_9H_{11}F_2IO_6$: C, 28.44; H, 2.92. Found: C, 28.64; H, 2.73.

1,3,4-Tri-*O*-acetyl-5-deoxy-5,5-difluoro-2-*O*-formyl-D-arabinitol (11). Syrup (87%). $[\alpha]_D$ +55 (c = 0.27); IR 2944, 1761, 1737, 1371, 1206, 1157 cm⁻¹; ¹H NMR 2.07 (3H, s), 2.12 (3H, s), 2.15 (3H, s), 4.03 (1H, dd, J = 6.8, 11.9 Hz), 4.31 (1H, dd, J = 4.7, 11.9 Hz), 5.20–5.28 (1H, m), 5.50–5.56 (2H, m), 5.84 (1H, dt, J = 3.5 Hz; ² $J_{FH} = 54.4$ Hz), 8.05 (1H, s); ¹³C NMR 20.4 (2 × CH₃), 20.5 (CH₃), 61.5 (CH₂), 67.2 (CH), 67.3 (CH), 67.6 (CH, dd, ² $J_{FC} = 23.8$, 24.8 Hz), 112.7 (CH, dd, ¹ $J_{FC} = 243.6$, 245.4), 159.6 (CH), 169.0 (C), 169.3 (C), 170.3 (C); MS (rel intensity) m/z 327 (M⁺ + 1, 1), 281 (2), 267 (13), 253 (6), 203 (82), 178 (58), 131 (69), 115 (100); HRMS calcd for C₁₂H₁₇F₂O₈ 327.089149, found 327.090736. Anal. Calcd for C₁₂H₁₆F₂O₈: C, 44.18; H, 4.94. Found: C, 44.20; H, 5.03.

3,4-Di-O-acetyl-1,5,6,7,8-pentadeoxy-5,5-difluoro-2-O-formyl-L-arabino-oct-7-

enitol (12). Syrup (90%). [α]_D +27 (c = 0.25); IR 2935, 1757, 1730, 1370, 1209, 1173, 1055 cm⁻¹; ¹H NMR 1.23 (3H, d, J = 6.4 Hz), 2.09 (3H, s), 2.13 (3H, s), 2.63 (2H, ddd, J = 7.0 Hz; ³J_{FH} = 19.0, 19.0 Hz), 5.20 (1H, dd, J = 1.5, 17.0 Hz), 5.24 (1H, dd, J = 1.5, 10.2 Hz), 5.29–5.35 (2H, m), 5.44 (1H, ddd, J = 0.8, 2.7, 8.2 Hz), 5.78 (1H, dddd, J = 7.0, 7.0, 10.2, 17.0 Hz), 7.97 (1H, s); ¹³C NMR 16.3 (CH₃), 20.6 (2 × CH₃), 38.4 (CH₂, t, ²J_{FC} = 25.0 Hz), 67.3 (CH), 68.9 (CH, t, ²J_{FC} = 28.0 Hz), 70.1 (CH), 121.0 (C, t, ¹J_{FC} = 246.0 Hz), 121.0 (CH₂), 127.6 (CH), 160.0 (CH), 168.9 (C), 169.7 (C); MS (rel intensity) m/z 289 (M⁺ – F, 1), 262 (7), 248 (14), 193 (33), 145 (100), 103 (67); HRMS calcd for C₁₃H₁₈FO₆ 289.1087, found 289.1099. Anal. Calcd for C₁₃H₁₈O₆F₂: C, 50.65; H, 5.89. Found: C, 50.51; H, 5.89.